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Comparison between high-order velocity vector and temperature structure functions
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A previously established similarity between the second-order temperature structure fuf(@i@?), and
the sum of the second-order velocity structure functigif$g)?), is extended to higher-order moments.
Measurements in a low Reynolds number turbulent wake indicate(that |"), for n=2 to 6, is in much
closer agreement witl| 5g*|") than with {|su*|"), whereu is the longitudinal velocity fluctuation and
asterisks denote normalization by Kolmogorov scales. The behavigsgf |*) and(|56*|*) at small sepa-
rations is consistent with isotrop}S1063-651X98)12802-7

PACS numbds): 47.27.Vf

In a turbulent flow, the instantaneous scadais, prima-  be between a scalar quantity derived from the velocity vector
rily, advected by the instantaneous velgcity ve¢igp). Tbe increment 5a:a(x+ r —a(X)E i Su+ f&v +Kéw where r
instantaneous velocity fluctuation vecwiis defined asilu s the longitudinal separation. To convert to a scalar quantity,
+fv+ Izw), whereu, v, andw are the velocity components, we take the dot producﬁa. 5&5(5u)2+(5v)2+(6w)2
and i, f andk are unit vectors in the, y, z directions, =|&q|?. Accordingly, we consider theth-order absolute

respectively. A spectral analogy was propo&d] between  structure function (|8q|™=([(su)2+ (6v)%+ (sw)?]"?)
oo(f), the spectrum of the temperature fluctuatidtf is the  and compare it wit{|56|") and{|Su|"). Since the focus is

frequency, and ¢(f), a spectrum defined by on values ofr within the dissipative range, the Kolmogorov
velocity and temperature scalébese are defined belgwre
(u?) (v?) (w?) appropriate for normalizing velocity and temperature incre-
¢q(f)=<q—2>¢u(f)+m¢v(f)+<q—2>¢w(f), ments.

Measurements were made in the self-preserving region of
. ) a turbulent wake. A small Reynolds number was used, pri-
i.e., the sum of the weighted spectrawfuv, andw. (a%)  marily to minimize the effect of spatial resolution of the
represents the average turbulent ener@y’)+(v®)  sensors; this was feasible because a relatively large value of
+(w?), angular brackets denoting averaging with respect tgne Kolmogorov microscale (=134 e) ¥4 wherev is the
time. The integrald ¢,(f)df and [ ¢4(f)df are equal to  kinematic viscosity ande) is the mean turbulent energy dis-
(6% and(q?), respectively. Bot{ #?) and(g?) are invariant  sipation ratg was possible. Also, the local turbulent intensi-
with respect to space transformations. The similarity beties are small, thus allowing the use of Taylor's hypothesis
tween ¢, and ¢, was shown to be significantly superior to for converting temporal to spatial increments. Experimental
that betweenp, and¢,, . In a previous papdi], the second-  details can be found if5]; only a brief summary is given
order scalar temperature structure function, defined alere. The nonisothermal wake was generated with a heated
((86)%), was compared with the sum of the second-ordemluminum tube of external diameter=6.35 mm at a free-
velocity ~ structure  functions, ((du)®+(dv)*+(ow)?)  stream velocityU,,=3.6 m/s; the Reynolds numbeR
=(|8q|%. Both ((56)?) and(|5q|?) are scalar quantities =1500 (=U..d/v). Measurements were made on the center
and it was argued that this comparison is more appropriatine at x/d=240 whereR, (=u’\/v) is 40. 5 is 0.64 mm
than that betweex(56%) and((su)?), the commonly used and the Kolmogorov velocity scald), (=v"% )% is
longitudinal velocity structure function. Also, Anton&t al.  0.024 m/s.(e) is estimated using the isotropic relation
[6] showed that, when the molecular Prandtl number is 1, th¢e) = 150((9u/9x)?). The mean temperature excess is
transport equation fofdq|? is closely analogous to Ya- 0.4°C and the Kolmogorov  temperature  scale
glom’s [7] equation, which describes the transport 86)>. 6, [=(e,)2(v/(€))¥] is 0.01 °C.(e,) is the average tem-
Here, we extend the analogy betwegn6)?) and(|5q|%) to  perature dissipation rate and is estimated from the isotropic
higher-order moments. This should be of interest in the conrelation (e,)=3«((36/9x)?), wherex is the thermal diffu-
text of comparing the small-scale intermittencies of the vesivity. The spatial derivativesg(i/9x) and (96/x), are cal-
locity and temperature fields. To date, the intermittency charculated by converting the respective time derivatives using
acteristics of the velocity field have been based almostayiors hypothesis 4/9x=—U~1d/at). This hypothesis is
exclusively onu and the intermittency exponents inferred 4150 used to convert temporal increments into spatial incre-
from ((6u)") have been compared with those inferred fromments. The velocity fluctuations were measured withXan
((660)"), e.g.,[8-10. This comparison is not altogether ap- probe (placed first in thex-y plane for measuringi andv
propriate given thau is one component off and 6 is a  and then rotated through 90° for measuringndw). Wol-
scalar; also, as noted abowvé,is more likely to be trans- laston(Pt-10% Rh wires of 2.5um diameter were used and
ported by the instantaneous velocity vector than by just the¢he inclined wires were 1.2 mm apart. The wire lengths were
longitudinal velocity. A more appropriate comparison would etched to 0.5 mm length and operated with constant tempera-
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FIG. 1. Kolmogorov-normalized second and fourth-order mo- % v
ments of|5q| obtained with the singleX-probe method and the 102 ©
vorticity probe.{|89*|?): V, single X probe; O, vorticity probe. Covvnl il 1o
(|6g*|*): A, singleX-probe;[], vorticity probe. 107 10° 10 10?

*

ture anemometers at an overheat ratio of 1.5. The tempera- . .
ture fluctuation measurements were made with a Q.68 FIG. 2. Kolmogorov-normalized secor_1d, fou:th, and szd?-order
diameter Wollaston wire, etched to a length of 0.7 mm. Thegoszggﬁn?ﬂ@, <||‘;ﬂ; ﬁr;dﬁgt'eatsh;ffhnecg?in icr:fs érg’ d€|55?ac|ezj; for
cold wire was operated in a constant current circuit supply—ea’lchn For’n=’2 and 4 .the single-probe %ata are uszd Far
ing 0.1 mA and its sensitivity to velocity is negligible. Ap- _6 the vorticity probe data are used. '
propriate gains and offset voltages were applied; all signals
are filtered and sampled directly into a IBM-compatible PC i .in
using a 12-bitA/D board. The sampling frequency was set tomuciw ncloser numerical agreement betvl/eﬁ¢ﬁq ") and
20 kHz. The cutoff frequency was 800 Hz for the velocity<|56’*|n> than* lgetwegn(|5q ") and {|5u*["). The ratio
and 630 Hz for the temperature data. <|5‘9*|n>/<|5ﬂ ,L ) is much _close_r to_ 1~ than
By definition, simultaneous measurementsiob, andw  (96*1"/(|8u*["), the latter quantity being typically 1 to 2
are required to form{|5q|") for n<2. The previous single orders of magnitude Iarg_er thgn the former. Althoughis
X-probe measurements were not simultaneous. Simultaneoff2® small for a Wﬁ”'def'r}ﬁ’)d inertial range, the exponents
measurements were made, albeit with poorer spatial resolg«(n). where(|sa|")~r<{" (here a=q, u, or 6), were
tion with an eight wire vorticity probe operating under iden- €timated using the ESS approddiz]. As expected from
tical experimental conditions. The vorticity probe, describedn€ distributions in Fig. 2, the magnitudg was closer to
in more detail in Zhu and Antoni&ll], consisted of four that of £, than that of{,; e.g., forn=6, {4=15, {,
orthogonal X probes in a box formation of spany2and =1.2_4, while ,=1.78. C_Iearly, it would be of interest to
height 2;. Although the resolution of the measurement Wasobt_am th_ese_exponents in other flows, p_referably with well
coarsewith f,=2 kHz, the smallest step fot* is 2.6; quan- defined inertial ranges. Recent observatioeg.,[13—15)

tities with asterisks denote normalization jyUy , or 6y), indicate that the inertial range scaling exponents ¢br w)
the agreement with the sing-probe values of | 5q"|) is become smaller, as the order increases, than those fihis
quite good(Fig. 1) for n=2 andn=4. Note that fom=4, implies that the discrepandB—1Q between the scaling ex-

ponents ofu and 6 should be reduced when considering
4 _ 4 4 4 2 2 |8g|™ and(|56|™).
(186D =T+ (d0) )+ {(ow)™+ 2((ou)*(80)°) < It is> of ingerest>t0 compare the limiting values @#q|")
+2((8u)?(dW)?)+2((Sv)?(dw)?). (1) and(|86|"), taking advantage of the particularly good reso-
lution of the small scales in the present experiment. The case
With the singleX probe, all terms on the right side of Eq)  n=2 has already been considered by Antogial. [5]; the
can be obtained except fd( 5v)?(dw)?). This latter term  results are reproduced in Fig. 3. We will focus, primarily, on
was estimated via the isotropic relatiof(dv)?(éw)2)  n=4. In the limitr—0,
=((Sv)*)/3. The vorticity probe data indicated that this re-
lation is accurate £ 2%) forr* <50. Figure 1 suggests that
the singleX-probe estimates of(5q)*) should be reliable
for values ofr* smaller than the Kolmogorov scale.

Figure 2 shows even-order moments ¢fsq*|"),  with similar expressions fof(Sv)"), ((dw)"), and((56)").
{|8u*|™), and{|56*|") for n=2, 4, and 6; vorticity probe Forn=2, (| 8q|?)=((8u)?+ (sv)?+ (éw)?). Using Eq.(1),
data were used foff 5g* |°). The isotropic values ofe) and it follows that, for locally isotropic turbulence and in the
(€,) are 20% and 12% higher than those inferred from thdimit r—0, (|8q|2)=5r%(au/dx)?) since ((dvl/dx)?)
“4/5" and “4/3” laws, viz., {((6u)®)=—4/5e)r and ={((awl/dx)®)=2((auldx)?). We note, however, that the
((6u)(86)2)=—4/3(e,)r. Allowing for these differences, measurements indicate thatv/ox)%)=1.9(du/9x)%) and
and associated errors for, , 6, andz, Fig. 2 demonstrates ((dw/dx)?)=1.8/(du/9x)?). Such departures are within the

((ou)y=r"((aulax)"), 2
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FIG. 3. Second-order moments ffq*| and|56*| multiplied _':4|G' 4. Fourth;order moments poa*| and|50’;| mljliiplied by
by r*-2 0o, <|5q*|2>; o, <|50*|2>; — (|6q*|2>r*‘2=1/3, Eq. r*=% 0, (|6q*| >; O, <‘50*| ); —, (|5q*| )r* =(43/3)
%2\ % —2_ Fowad15, EQ. (7); -, (| 86%|Mr* ~4=(Pr?/9) F 4.4, EQ.(8).
(3); -, (| 66*|%)r Pr/3, Eq.(4).
noise level of the signals. Normalizing, with Kolmogorov or
scales, leads tbwhenr* —0)
*\2\pk —2_ B 43
((ag*)%)r*~==1/3. ©) (80 ))r* ~*=—F juynl 15, @)

Similarly, in the limitr* —0, . o o
whereF ;. is the flatness factor ofu/gx. Similarly, it is
easy to show that, whert —0,

(|56%|%)r* ~2=Pr/3. (4
The experimental results in Fig. 2€2) and Fig. 3 confirm (| 56* |4yr* _4:P_r2 = ®)
that |56*|? is indeed smaller that| 5q*|?), the difference g v

being equal tcPr.
If we now consider Eq.(1), the limiting values of
((8u)®), ((6v)*, and{(sw)*) whenr—0 are given by Eq. WhereF;,, is the flatness factor af¢/dx. Interestingly, the
(2); the cross moments in E@l) are given by coefficients ofF,,,,x andF ;4 are only marginally differ-
ent, with the former equal to 0.064 and the latter to 0.059
(whenPr=0.73. Note that, when* —0,
((8U)2(8v)2)y=r*(gul 9x)?(dvl 9x)?), (5)

<|5U*|4>r*_4:Fau/&x/1521
with  similar  expressions for ((su)®(éw)?) and L
((8v)%(8w)?). For isotropic turbulencel(v)%), ((w)%) i.e., a factor of 43/3 smaller than the coefficient in Ef).
and the cross moments can be related(#u)?) through the Although Fig. 4 shows remarkable agreement between the

expression for the eighth-order correlation tensoriMiting behaviors of(| 5g*|*) and (|56* %) with Eqgs.(7)
(U; Ui Uk oUy o) [16], viz and (8), there are individual departures from the isotropic
i,mUj,nUk pUi q iz,

requirements of Eq(6), e.g., {(dw/adx)*)~3.%(dul9x)*),
((dvlax)Hy~4.4(oulax)*), and ((dulax)?(awlIx)?)
((dulax)*y=((awlax)*y=4((aul Ix)*) =0.8(du/dx)?). Although these departures are not negli-
(6)  gible, they may be of either sign; consequently, the sum of
all the terms on the right of Eq1) approximately satisfies

(Ul ax)2(dv19x)2)y = {(Jul 9X) 2( Wl 3x)2) Eq. (7). ,
In summary, there is much closer agreement between
={((dvl 9x)*(owl 9x)?)/2 (|86*|™) and{|5g*|") than betweerf| 56*|") and(|su*|").
In particular, for smallr*, (|59*|*) and(]56*|*) conform
— 4
=2((aulax)")13. with isotropy. While the magnitudes of|dq*|?) and

((66*)?), in the limitr* —0, differ by a factor equal t®r,
the magnitudes of| 5g* |*) and{|56*|*) are nearly identi-

It follows from Egs.(1) and(5) that, in the limitr — 0, cal

43 R.A.A. is grateful to the Australian Research Council for
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