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Comparison between high-order velocity vector and temperature structure functions
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Department of Mechanical Engineering, University of Newcastle, Callaghan, 2308, New South Wales, Australia

~Received 24 March 1997; revised manuscript received 17 October 1997!

A previously established similarity between the second-order temperature structure function,^(du)2&, and
the sum of the second-order velocity structure functions,^(dq)2&, is extended to higher-order moments.
Measurements in a low Reynolds number turbulent wake indicate that^udu* un&, for n52 to 6, is in much
closer agreement witĥudq* un& than with ^udu* un&, where u is the longitudinal velocity fluctuation and
asterisks denote normalization by Kolmogorov scales. The behavior of^udq* u4& and ^udu* u4& at small sepa-
rations is consistent with isotropy.@S1063-651X~98!12802-7#

PACS number~s!: 47.27.Vf
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In a turbulent flow, the instantaneous scalara is, prima-
rily, advected by the instantaneous velocity vector@1,2#. The

instantaneous velocity fluctuation vectorqW is defined as (iWu

1 jWv1kWw), whereu, v, andw are the velocity components

and iW, jW, and kW are unit vectors in thex, y, z directions,
respectively. A spectral analogy was proposed@3,4# between
fu( f ), the spectrum of the temperature fluctuationu ~f is the
frequency!, andfq( f ), a spectrum defined by

fq~ f !5
^u2&

^q2&
fu~ f !1

^v2&

^q2&
fv~ f !1

^w2&

^q2&
fw~ f !,

i.e., the sum of the weighted spectra ofu, v, andw. ^q2&
represents the average turbulent energy[^u2&1^v2&
1^w2&, angular brackets denoting averaging with respec
time. The integrals*0

`fu( f )d f and*0
`fq( f )d f are equal to

^u2& and^q2&, respectively. Botĥu2& and^q2& are invariant
with respect to space transformations. The similarity
tweenfu andfq was shown to be significantly superior
that betweenfu andfu . In a previous paper@5#, the second-
order scalar temperature structure function, defined
^(du)2&, was compared with the sum of the second-or
velocity structure functions, ^(du)21(dv)21(dw)2&
[^udqu2&. Both ^(du)2& and ^udqu2& are scalar quantities
and it was argued that this comparison is more appropr
than that between̂(du2& and ^(du)2&, the commonly used
longitudinal velocity structure function. Also, Antoniaet al.
@6# showed that, when the molecular Prandtl number is 1,
transport equation forudqu2 is closely analogous to Ya
glom’s @7# equation, which describes the transport of (du)2.
Here, we extend the analogy between^(du)2& and^udqu2& to
higher-order moments. This should be of interest in the c
text of comparing the small-scale intermittencies of the
locity and temperature fields. To date, the intermittency ch
acteristics of the velocity field have been based alm
exclusively onu and the intermittency exponents inferre
from ^(du)n& have been compared with those inferred fro
^(du)n&, e.g.,@8–10#. This comparison is not altogether a

propriate given thatu is one component ofqW and u is a
scalar; also, as noted above,u is more likely to be trans-
ported by the instantaneous velocity vector than by just
longitudinal velocity. A more appropriate comparison wou
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be between a scalar quantity derived from the velocity vec

increment dqW 5qW (x1r )2qW (x)[ iWdu1 jWdv1kWdw where r
is the longitudinal separation. To convert to a scalar quan

we take the dot productdqW •dqW [(du)21(dv)21(dw)2

[udqu2. Accordingly, we consider thenth-order absolute
structure function ^udqun&[^@(du)21(dv)21(dw)2#n/2&
and compare it witĥ uduun& and ^uduun&. Since the focus is
on values ofr within the dissipative range, the Kolmogoro
velocity and temperature scales~these are defined below! are
appropriate for normalizing velocity and temperature inc
ments.

Measurements were made in the self-preserving regio
a turbulent wake. A small Reynolds number was used,
marily to minimize the effect of spatial resolution of th
sensors; this was feasible because a relatively large valu
the Kolmogorov microscaleh ([n3/4^e&21/4, wheren is the
kinematic viscosity and̂e& is the mean turbulent energy dis
sipation rate! was possible. Also, the local turbulent intens
ties are small, thus allowing the use of Taylor’s hypothe
for converting temporal to spatial increments. Experimen
details can be found in@5#; only a brief summary is given
here. The nonisothermal wake was generated with a he
aluminum tube of external diameterd56.35 mm at a free-
stream velocity U`53.6 m/s; the Reynolds numberRd
51500 ([U`d/n). Measurements were made on the cen
line at x/d5240 whereRl ([u8l/n) is 40. h is 0.64 mm
and the Kolmogorov velocity scaleUk ([n1/4^e&1/4) is
0.024 m/s. ^e& is estimated using the isotropic relatio
^e&515n^(]u/]x)2&. The mean temperature excessT0 is
0.4 °C and the Kolmogorov temperature sca
uk @[^eu&

1/2(n/^e&)1/4# is 0.01 °C.^eu& is the average tem
perature dissipation rate and is estimated from the isotro
relation ^eu&53k^(]u/]x)2&, wherek is the thermal diffu-
sivity. The spatial derivatives, (]u/]x) and (]u/]x), are cal-
culated by converting the respective time derivatives us
Taylor’s hypothesis (]/]x52Ū21]/]t). This hypothesis is
also used to convert temporal increments into spatial inc
ments. The velocity fluctuations were measured with anX
probe ~placed first in thex-y plane for measuringu and v
and then rotated through 90° for measuringu andw!. Wol-
laston~Pt-10% Rh! wires of 2.5mm diameter were used an
the inclined wires were 1.2 mm apart. The wire lengths w
etched to 0.5 mm length and operated with constant temp
2463 © 1998 The American Physical Society
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2464 57BRIEF REPORTS
ture anemometers at an overheat ratio of 1.5. The temp
ture fluctuation measurements were made with a 0.63mm
diameter Wollaston wire, etched to a length of 0.7 mm. T
cold wire was operated in a constant current circuit supp
ing 0.1 mA and its sensitivity to velocity is negligible. Ap
propriate gains and offset voltages were applied; all sign
are filtered and sampled directly into a IBM-compatible P
using a 12-bitA/D board. The sampling frequency was set
20 kHz. The cutoff frequency was 800 Hz for the veloc
and 630 Hz for the temperature data.

By definition, simultaneous measurements ofu, v, andw
are required to form̂ udqun& for n,2. The previous single
X-probe measurements were not simultaneous. Simultan
measurements were made, albeit with poorer spatial res
tion with an eight wire vorticity probe operating under ide
tical experimental conditions. The vorticity probe, describ
in more detail in Zhu and Antonia@11#, consisted of four
orthogonalX probes in a box formation of span 2h and
height 2h. Although the resolution of the measurement w
coarse~with f s52 kHz, the smallest step forr * is 2.6; quan-
tities with asterisks denote normalization byh, UK , or uK!,
the agreement with the singleX-probe values of̂ udqnu& is
quite good~Fig. 1! for n52 andn54. Note that forn54,

^~ udqu!4&5^~du!4&1^~dv !4&1^~dw!412^~du!2~dv !2&

12^~du!2~dw!2&12^~dv !2~dw!2&. ~1!

With the singleX probe, all terms on the right side of Eq.~1!
can be obtained except for^(dv)2(dw)2&. This latter term
was estimated via the isotropic relation̂(dv)2(dw)2&
5^(dv)4&/3. The vorticity probe data indicated that this r
lation is accurate (62%) for r * &50. Figure 1 suggests tha
the singleX-probe estimates of̂(dq)4& should be reliable
for values ofr * smaller than the Kolmogorov scale.

Figure 2 shows even-order moments of^udq* un&,
^udu* un&, and ^udu* un& for n52, 4, and 6; vorticity probe
data were used for̂udq* u6&. The isotropic values of̂e& and
^eu& are 20% and 12% higher than those inferred from
‘‘4/5’’ and ‘‘4/3’’ laws, viz., ^(du)3&524/5̂ e&r and
^(du)(du)2&524/3̂ eu&r . Allowing for these differences
and associated errors forUk , uk, andh, Fig. 2 demonstrates

FIG. 1. Kolmogorov-normalized second and fourth-order m
ments of udqu obtained with the singleX-probe method and the
vorticity probe. ^udq* u2&: ,, single X probe; s, vorticity probe.
^udq* u4&: n, singleX-probe;h, vorticity probe.
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much closer numerical agreement between^udq* un& and
^udu* un& than between̂ udq* un& and ^udu* un&. The ratio
^udu* un&/^udq* un& is much closer to 1 than
^udu* un/^udu* un&, the latter quantity being typically 1 to 2
orders of magnitude larger than the former. AlthoughRl is
too small for a well-defined inertial range, the expone
za(n), where ^udaun&;r za(n) ~here a[q, u, or u!, were
estimated using the ESS approach@12#. As expected from
the distributions in Fig. 2, the magnitudezq was closer to
that of zu than that of zu ; e.g., for n56, zq.1.5, zu
51.24, while zu.1.78. Clearly, it would be of interest to
obtain these exponents in other flows, preferably with w
defined inertial ranges. Recent observations~e.g., @13–15#!
indicate that the inertial range scaling exponents ofv ~or w!
become smaller, as the order increases, than those foru. This
implies that the discrepancy@8–10# between the scaling ex
ponents ofu and u should be reduced when considerin
^udqun& and ^uduun&.

It is of interest to compare the limiting values of^udqun&
and^uduun&, taking advantage of the particularly good res
lution of the small scales in the present experiment. The c
n52 has already been considered by Antoniaet al. @5#; the
results are reproduced in Fig. 3. We will focus, primarily,
n54. In the limit r→0,

^~du!n&5r n^~]u/]x!n&, ~2!

with similar expressions for̂(dv)n&, ^(dw)n&, and^(du)n&.
For n52, ^udqu2&[^(du)21(dv)21(dw)2&. Using Eq.~1!,
it follows that, for locally isotropic turbulence and in th
limit r→0, ^udqu2&55r 2^(]u/]x)2& since ^(]v/]x)2&
5^(]w/]x)2&52^(]u/]x)2&. We note, however, that the
measurements indicate that^(]v/]x)2&51.9̂ (]u/]x)2& and
^(]w/]x)2&51.8̂ (]u/]x)2&. Such departures are within th

-

FIG. 2. Kolmogorov-normalized second, fourth, and sixth-ord
moments ofudqu, uduu, anduduu as a function ofr * . s, ^udq* un&;
h, ^udu* un&; ,, ^udu* un&. Note that the origins are displaced fo
eachn. For n52 and 4, the singleX-probe data are used. Forn
56, the vorticity probe data are used.
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noise level of the signals. Normalizing, with Kolmogoro
scales, leads to~when r *→0!

^~dq* !2&r * 2251/3. ~3!

Similarly, in the limit r *→0,

^udu* u2&r * 225Pr/3. ~4!

The experimental results in Fig. 2 (n52) and Fig. 3 confirm
that udu* u2 is indeed smaller than̂udq* u2&, the difference
being equal toPr.

If we now consider Eq.~1!, the limiting values of
^(du)4&, ^(dv)4&, and^(dw)4& whenr→0 are given by Eq.
~2!; the cross moments in Eq.~1! are given by

^~du!2~dv !2&5r 4^~]u/]x!2~]v/]x!2&, ~5!

with similar expressions for ^(du)2(dw)2& and
^(dv)2(dw)2&. For isotropic turbulence,̂(dv)4&, ^(dw)4&,
and the cross moments can be related to^(du)4& through the
expression for the eighth-order correlation tens
^ui ,muj ,nuk,pul ,q& @16#, viz.,

^~]v/]x!4&5^~]w/]x!4&54^~]u/]x!4&
~6!

^~]u/]x!2~]v/]x!2&5^~]u/]x!2~]w/]x!2&

5^~]v/]x!2~]w/]x!2&/2

52^~]u/]x!4&/3.

It follows from Eqs.~1! and ~5! that, in the limitr→0,

^udqu4&5
43

3
r 4^~]u/]x!4&

FIG. 3. Second-order moments ofudq* u and udu* u multiplied
by r * 22. h, ^udq* u2&; s, ^udu* u2&; —, ^udq* u2&r * 2251/3, Eq.
~3!; ---, ^udu* u2&r * 225Pr/3, Eq. ~4!.
r

or

^~dq* !4&r * 245
43

3
F]u/]x/152, ~7!

whereF]u/]x is the flatness factor of]u/]x. Similarly, it is
easy to show that, whenr *→0,

^udu* u4&r * 245
Pr2

9
F]u/]x , ~8!

whereF]u/]x is the flatness factor of]u/]x. Interestingly, the
coefficients ofF]u/]x and F]u/]x are only marginally differ-
ent, with the former equal to 0.064 and the latter to 0.0
~whenPr50.73!. Note that, whenr *→0,

^udu* u4&r * 245F]u/]x/152,

i.e., a factor of 43/3 smaller than the coefficient in Eq.~7!.
Although Fig. 4 shows remarkable agreement between
limiting behaviors of^udq* u4& and ^udu* u4& with Eqs. ~7!
and ~8!, there are individual departures from the isotrop
requirements of Eq.~6!, e.g., ^(]w/]x)4&'3.7̂ (]u/]x)4&,
^(]v/]x)4&'4.4̂ (]u/]x)4&, and ^(]u/]x)2(]w/]x)2&
.0.8̂ (]u/]x)2&. Although these departures are not neg
gible, they may be of either sign; consequently, the sum
all the terms on the right of Eq.~1! approximately satisfies
Eq. ~7!.

In summary, there is much closer agreement betw
^udu* un& and^udq* un& than between̂udu* un& and^udu* un&.
In particular, for smallr * , ^udq* u4& and ^udu* u4& conform
with isotropy. While the magnitudes of̂ udq* u2& and
^(du* )2&, in the limit r *→0, differ by a factor equal toPr,
the magnitudes of̂udq* u4& and ^udu* u4& are nearly identi-
cal.

R.A.A. is grateful to the Australian Research Council f
its continuing support. We are grateful to Dr. Y. Zhu for h
contribution to the experimental work.

FIG. 4. Fourth-order moments ofudq* u andudu* u multiplied by
r * 24. h, ^udq* u4&; s, ^udu* u4&; —, ^udq* u4&r * 245(43/3)
F]u/]x/152, Eq. ~7!; ---, ^udu* u4&r * 245(Pr2/9) F]u/]x , Eq. ~8!.
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